[00867827]基于马尔可夫链和模糊聚类的电力系统短期负荷预测
交易价格:
面议
所属行业:
电力
类型:
非专利
交易方式:
资料待完善
联系人:
所在地:
- 服务承诺
- 产权明晰
-
资料保密
对所交付的所有资料进行保密
- 如实描述
技术详细介绍
提出一种马尔可夫链和模糊聚类相结合的预测方法,针对时间序列中出现的各种随机现象,分别建立数学模型.对样本所属状态采用模糊划分,使分类更符合实际情况;利用马尔可夫链对研究对象做状态分析,根据状态转移进行预测.该方法在电力系统负荷预测中使用,提高了算法的全局最优性能.在时间序列呈现较强的随机性时,本算法具有明显的优越性.仿真结果表明,对于各种扰动因素,预测误差可控制在3.5%以内.
提出一种马尔可夫链和模糊聚类相结合的预测方法,针对时间序列中出现的各种随机现象,分别建立数学模型.对样本所属状态采用模糊划分,使分类更符合实际情况;利用马尔可夫链对研究对象做状态分析,根据状态转移进行预测.该方法在电力系统负荷预测中使用,提高了算法的全局最优性能.在时间序列呈现较强的随机性时,本算法具有明显的优越性.仿真结果表明,对于各种扰动因素,预测误差可控制在3.5%以内.