[00335247]一种图像协同显著区域的检测方法
交易价格:
面议
所属行业:
分析仪器
类型:
发明专利
技术成熟度:
通过小试
专利所属地:中国
专利号:CN201710591486.4
交易方式:
资料待完善
联系人:
安徽大学
进入空间
所在地:安徽合肥市
- 服务承诺
- 产权明晰
-
资料保密
对所交付的所有资料进行保密
- 如实描述
技术详细介绍
摘要:本发明公开了一种图像协同显著区域的检测方法,属于计算机视觉技术领域,包括S1、采用M种显著检测方法对N张待检测图像进行显著性检测,得到M×N基本显著图S2、利用具有拉普拉斯正则项的低秩矩阵分解模型,对M×N张显著区域颜色特征构成的直方图矩阵进行分解,得到所述基本显著图的加权值,得到的加权值;S3、将的加权值与相应的进行融合,得到加权显著图Sc;S4、对每张待检测图像进行聚类处理,利用Sc指导第i张待检测图像聚类后类的协同显著分配,得到协同显著图Sd;S5、将Sc和Sd进行融合,得到N张待检测图像的显著图S。通过在低秩矩阵分解模型中加入拉普拉斯正则项,提高了低秩背景与系数矩阵区分的准确性,提高了协同显著区域的检测效率。
摘要:本发明公开了一种图像协同显著区域的检测方法,属于计算机视觉技术领域,包括S1、采用M种显著检测方法对N张待检测图像进行显著性检测,得到M×N基本显著图S2、利用具有拉普拉斯正则项的低秩矩阵分解模型,对M×N张显著区域颜色特征构成的直方图矩阵进行分解,得到所述基本显著图的加权值,得到的加权值;S3、将的加权值与相应的进行融合,得到加权显著图Sc;S4、对每张待检测图像进行聚类处理,利用Sc指导第i张待检测图像聚类后类的协同显著分配,得到协同显著图Sd;S5、将Sc和Sd进行融合,得到N张待检测图像的显著图S。通过在低秩矩阵分解模型中加入拉普拉斯正则项,提高了低秩背景与系数矩阵区分的准确性,提高了协同显著区域的检测效率。