X为了获得更好的用户体验,请使用火狐、谷歌、360浏览器极速模式或IE8及以上版本的浏览器
帮助中心 | 关于我们
欢迎来到合肥巢湖经开区网上技术交易平台,请 登录 | 注册
尊敬的 , 欢迎光临!  [会员中心]  [退出登录]
当前位置: 首页 >  科技成果  > 详细页

[00258716]一种基于深度神经网络的压缩传感核磁共振成像方法

交易价格: 面议

所属行业: 分析仪器

类型: 发明专利

技术成熟度: 正在研发

专利所属地:中国

专利号:CN201611024706.7

交易方式: 技术转让 技术转让 技术入股

联系人: 西安交通大学

进入空间

所在地:陕西西安市

服务承诺
产权明晰
资料保密
对所交付的所有资料进行保密
如实描述
|
收藏
|

技术详细介绍

本发明公开了一种基于深度神经网络的压缩传感核磁共振成像方法,该方法可从核磁共振成像设备所采集到的k‑空间低采样数据重建出高质量的核磁共振图像。该方法主要包括交替方向乘子法深度神经网络的构造、网络参数训练过程、应用于压缩传感核磁共振成像三大步骤。采用多对低采样率下的采样数据和相应全采样数据重建的核磁共振图像为训练数据集,训练交替方向乘子法神经网络的模型参数,使该深度神经网络以低采样率下的采样数据为输入时的输出图像尽可能逼近全采样数据重建的图像;在应用中,给定低采样率下的k‑空间采样数据,将其输入到训练好的交替方向乘子法深度神经网络,该网络的输出即为重建的核磁共振图像。
本发明公开了一种基于深度神经网络的压缩传感核磁共振成像方法,该方法可从核磁共振成像设备所采集到的k‑空间低采样数据重建出高质量的核磁共振图像。该方法主要包括交替方向乘子法深度神经网络的构造、网络参数训练过程、应用于压缩传感核磁共振成像三大步骤。采用多对低采样率下的采样数据和相应全采样数据重建的核磁共振图像为训练数据集,训练交替方向乘子法神经网络的模型参数,使该深度神经网络以低采样率下的采样数据为输入时的输出图像尽可能逼近全采样数据重建的图像;在应用中,给定低采样率下的k‑空间采样数据,将其输入到训练好的交替方向乘子法深度神经网络,该网络的输出即为重建的核磁共振图像。

推荐服务:

Copyright    ©    2016    合肥巢湖经开区网上技术交易平台    All Rights Reserved

皖ICP备15001458号

运营商:科易网